Coupling of a non-overlapping domain decomposition method for a nodal Finite Element Method with a Boundary Element Method

نویسندگان

  • Y. Boubendir
  • M. B. Fares
  • M B. FARES
چکیده

Non-overlapping domain decomposition techniques are used both to solve the finite element equations and to couple them with a boundary element method. A suitable approach dealing with finite element nodes common to more than two subdomains, the so-called cross-points, endows the method with the following advantages. It yields a robust and efficient procedure to solve the equations resulting from the discretization process. Only small size finite element linear systems and a dense linear system related to a simple boundary integral equation are solved at each iteration and each of them can be solved in a stable way. We also show how to choose the parameter definining the augmented local matrices in order to improve the convergence. Several numerical simulations in 2D and 3D validating the treatment of the cross-points and illustrating the strategy to accelerate the iterative procedure are presented. Copyright c © 2000 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

Evaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method

This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...

متن کامل

Non-overlapping Domain Decomposition Method and Nodal Finite Element Method

The non-overlapping domain decomposition method is an efficient approach for solving time harmonic scattering wave problems. It is used here to reduce large size systems solution to that of several systems of small size and to construct efficient procedures to couple finite element and boundary element methods. The lack of a satisfactory treatment of the so-called cross-points, nodes being shar...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000